x^2-7x+(7/4)=-4

Simple and best practice solution for x^2-7x+(7/4)=-4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2-7x+(7/4)=-4 equation:



x^2-7x+(7/4)=-4
We move all terms to the left:
x^2-7x+(7/4)-(-4)=0
We add all the numbers together, and all the variables
x^2-7x+(+7/4)-(-4)=0
We add all the numbers together, and all the variables
x^2-7x+4+(+7/4)=0
We get rid of parentheses
x^2-7x+4+7/4=0
We multiply all the terms by the denominator
x^2*4-7x*4+7+4*4=0
We add all the numbers together, and all the variables
x^2*4-7x*4+23=0
Wy multiply elements
4x^2-28x+23=0
a = 4; b = -28; c = +23;
Δ = b2-4ac
Δ = -282-4·4·23
Δ = 416
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{416}=\sqrt{16*26}=\sqrt{16}*\sqrt{26}=4\sqrt{26}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-28)-4\sqrt{26}}{2*4}=\frac{28-4\sqrt{26}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-28)+4\sqrt{26}}{2*4}=\frac{28+4\sqrt{26}}{8} $

See similar equations:

| 2+3x+1=61 | | (|10n+9|)/5+10=15 | | x^2=49/36​ | | 5x+42=11x | | b^2=512 | | -9(w-1)=-5w-7 | | (20x-50)+(10x-5)=120 | | 12x7=(x)x14 | | -2v+46=-4(v-9) | | 10x+15=12x-9 | | 3x-x-18=8x-6(x+3) | | 7(u-6)=-2u-15 | | x-4^2=49 | | 12(24*45y)=124 | | 3=-2v−v | | 350=10x | | x2=8(8+10) | | 2x-8=9+1 | | -1=x/3+8 | | -16x^2+32x=-240 | | 2x^2-2(x+4)x=5 | | 6(x-5)+3x=6 | | 1/3m+15=30 | | -4=8y+4(y+5) | | 28=1.5x+3 | | 1/2m+15=30 | | C=50+2d | | x+11=-25 | | 3h/2-7=68 | | x/2+14=41 | | 8-12=-3/z | | 8x-58=5x-58 |

Equations solver categories